Homogeneous luminescence decay time-based assay using energy transfer from nanospheres.

نویسندگان

  • Jens M Kümer
  • Otto S Wolfbeis
  • Ingo Klimant
چکیده

Following a study on the feasibility of resonance energy transfer (RET) from carboxylated nanospheres with an incorporated phosphorescent donor to a cationic polyelectrolyte/acceptor aggregate on their surface, a novel scheme for homogeneous assays is presented that is based on RET from phosphorescent biotinylated nanospheres to fluorescently labeled streptavidin (SA). The phosphorescent nanospheres, with a diameter of well below 50 nm, are made from carboxylated polyacrylonitrile and dyed with ruthenium(II)-tris-4,7-diphenyl-1,10-phenanthroline dichloride (Ru(dpp)). Due to the small size of the nanospheres and the complete extraction of the ruthenium dye into the nanospheres during the precipitation process, RET occurs from Ru(dpp) to the label if labeled SA binds to the surface of the nanospheres. Luminescence quenching by oxygen or other species present in the sample can be neglected due to the shielding effect of the polymer matrix. Based on this finding, a competitive binding assay was established, where avidin and labeled SA compete for the biotin binding sites on the nanosphere. The process of binding to the surface can be detected by measurement of the luminescence intensity or the apparent decay time which is in the order of 2.5-4.5 micros.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays.

The principles and practice of the application of time-resolved lanthanide chelate luminescence (or fluorescence) as a detection method for ultrasensitive bioanalytical assays such as immunoassays and nucleic acid hybridization assays are reviewed. The various lanthanide chelate-based detection systems which have been developed for use in heterogeneous and homogeneous assay formats are describe...

متن کامل

Quantum Dots as Acceptors in FRET-Assays Containing Serum

Quantum dots (QDs) are common as luminescing markers for imaging in biological applications because their optical properties seem to be inert against their surrounding solvent. This, together with broad and strong absorption bands and intense, sharp tuneable luminescence bands, makes them interesting candidates for methods utilizing Förster Resonance Energy Transfer (FRET), e. g. for sensitive ...

متن کامل

Homogeneous Assay Technologies in Drug Screening: Quenching Resonance Energy Transfer (qret) Technique

Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screen...

متن کامل

Relaxation processes from charge-transfer excited states of organic radical 1,3,5-trithia- 2,4,6-triazapentalenyl crystals studied by ultrafast luminescence spectroscopy

The excited state dynamics of 1,3,5-trithia-2,4,6-triazapentalenyl TTTA was investigated by using femtosecond luminescence spectroscopy. The luminescence was measured in low and high temperature phases of TTTA between 1.42 and 1.2 eV. Only in the low temperature phase, we observed a broad luminescence band with a decay time constant of 1.6 ps in all energy range. This decay time constant sugges...

متن کامل

Luminescence resonance energy transfer-based high-throughput screening assay for inhibitors of essential protein-protein interactions in bacterial RNA polymerase.

The binding of sigma factors to core RNA polymerase is essential for the specific initiation of transcription in eubacteria and is thus critical for cell growth. Since the responsible protein-binding regions are highly conserved among all eubacteria but differ significantly from eukaryotic RNA polymerases, sigma factor binding is a promising target for drug discovery. A homogeneous assay for si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 74 9  شماره 

صفحات  -

تاریخ انتشار 2002